Education

KwaZulu-Natal Department of Education

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

TIME: 3 hours
N.B. This question paper consists of 11 pages, 1 information sheet and an answer book of 23 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

1. This question paper consists of 11 questions.
2. Answer ALL questions.
3. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
4. Answers only will not necessarily be awarded full marks.
5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
7. Diagrams are NOT necessarily drawn to scale.
8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

QUESTION 1

Mrs Simakuhle sells ice cream to high school learners in her neighbourhood. The sales were analysed over 14 randomly selected days. Each sale was compared with the recorded maximum on the day. This information is reflected in the table below.

Temperature (in ${ }^{\circ} \mathrm{C}$)	15	21	17	22	20	16	16	23	38	13	28	14	26	18
Number of ice creams sold per day	101	128	112	124	116	96	123	139	127	85	172	89	148	107

1.1 Comment on the trend of the data.
1.2 Identify the outlier in the data set.
1.3 Determine the equation of the least squares regression line excluding the outlier.
1.4 Predict the number of ice creams sold per day if the maximum air temperature is $24^{\circ} \mathrm{C}$

QUESTION 2

The following weights (in kgs) were recorded from 15 randomly selected weight lifters at a certain gymnasium.

79	80	85	88	89	89	92	94	101	105	106	107	108	112	113

2.1 Calculate the mean weight of the weight lifters.
2.2 Calculate the standard deviation of the recorded weights.
2.3 How many weight lifters would be classified in the feather weight division if you have to weigh less than one standard deviation from the mean weight?
2.4 Draw a box and whisker diagram for the above data.
2.5 Calculate the IQR.
2.6 Comment on the spread of the data.

QUESTION 3

In the diagram below, $\mathrm{A}(-4 ; 5) ; \mathrm{C}(-1 ;-4), \mathrm{B}(4 ; 1)$ and D are the vertices of a quadrilateral. E is the midpoint of $C D$ and the point of intersection of the diagonals of $A B C D$.
$\mathrm{AB} \perp \mathrm{CED} . \theta$ is the angle of inclination of line CB .

3.1 Determine
3.1.1 the gradient of AB .
3.1.2 the equation of AB .
3.1.3 the equation of $C D$.
3.1.4 the coordinates of E .
3.1.5 the equation of the line parallel to BC and passing through A .
3.2 Calculate the value of θ.
3.3 Calculate the area of $\triangle \mathrm{AEC}$.

QUESTION 4

In the figure, the straight line $y=2 x-4$ and the circle $(x-6)^{2}+(y+2)^{2}=25$ intersect at A and $\mathrm{B}(3 ; 2)$. P is the centre of the circle and APC is the diameter. Also R is the x - intercept of line BC and S is the x - intercept of AB.

4.1 Write down the coordinates of the centre of the circle, P.
4.2 Calculate the coordinates of S.
4.3 Determine the equation of the line BC.
4.4 Determine the equation of the circle with centre R and passing through B and C.
4.5 Show that AC // SR.

QUESTION 5

5.1 Given:

$4 \tan \alpha+5=0, \alpha \in\left(0^{\circ} ; 180^{\circ}\right)$. Evaluate without using a calculator:
$\sqrt{41} \cos \alpha-4 \sin \left(-150^{\circ}\right) \cdot \cos 180^{\circ}$
5.2 Simplify, without the use of a calculator.

$$
\begin{equation*}
\text { 5.2.1 } \frac{\cos 99^{\circ}}{\cos 33^{\circ}}-\frac{\sin 99^{\circ}}{\sin 33^{\circ}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { 5.2.2 } \frac{\cos 140^{\circ}-\sin \left(90^{\circ}-\theta\right)}{\sin 130^{\circ}+\cos (-\theta)} \tag{5}
\end{equation*}
$$

5.3 Prove the identity:

$$
\begin{equation*}
\frac{2 \sin ^{2} x}{2 \tan x-\sin 2 x}=\frac{\cos x}{\sin x} \tag{6}
\end{equation*}
$$

5.4 Determine the general solution of the following equation:
$8 \sin \theta \cos \theta=-2 \sqrt{3}$

QUESTION 6

Given: $f(x)=3 \cos x$ and $g(x)=\tan 2 x$ for $x \in\left[-45^{\circ} ; 225^{\circ}\right]$
6.1 Sketch on the same set of axes the graphs of f and g. Clearly indicate any asymptotes using dotted lines.
6.2 One solution of the equation $3 \cos x=\tan 2 x$ is 34°. Use your graph, to determine any other solutions in the given interval.

QUESTION 7

In the diagram QS is a vertical pole. P and R are points in the same horizontal plane as Q such that $\mathrm{QP}=\mathrm{QR}$. The angle of elevation of the top of the pole S from P is y.
Also $\mathrm{SQ}=\mathrm{h}$ and $\mathrm{P} \hat{R} \mathrm{Q}=2 y$.

Prove that:
$\mathrm{PR}=\frac{h \cdot \cos ^{2} y}{\sin y \cdot \sin 2 y}$

QUESTION 8

In the diagram below, AOCD is a diameter of the circle with centre O and chord $\mathrm{BE}=30 \mathrm{~cm}$. $\mathrm{AOCD} \perp \mathrm{BE}$ and $\mathrm{OC}=2 \mathrm{CD}$.

Calculate with reasons:
8.1 BC
8.2 If CD $=a$ units, determine OC in terms of a.
8.3 Calculate OB.
8.4 AB (correct to one decimal place).
8.5 the radius of the circle CAB.

QUESTION 9

9.1 In the diagram below, ABCD is a cyclic quadrilateral of the circle with centre O .

Use the diagram to prove the theorem which states that $\hat{\mathrm{B}}+\hat{\mathrm{D}}=180^{\circ}$.

9.2 KOL is the diameter of the circle KPNML having centre $\mathrm{O} . \mathrm{R}$ is the point on chord KN , such that $K R=R O$. OR is produced to P. Chord KM bisects LKN and cuts LP in T. $\mathrm{K}_{1}=x$.

Prove with reasons that:
9.2.1 $\mathrm{TK}=\mathrm{TL}$
9.2.2 KOTP is a cyclic quadrilateral.
9.2.3 PN // MK

QUESTION 10

In $\triangle A B C, R$ is a point on $A B . S$ and P are points on $A C$ such that $R S / / B P . P$ is the midpoint of $A C$. RC and BP intersects at $T . \frac{\mathrm{AR}}{\mathrm{AB}}=\frac{3}{5}$.

Calculate with reasons, the following ratios:
$10.1 \quad \frac{\mathrm{AS}}{\mathrm{SC}}$
$10.2 \frac{\mathrm{RT}}{\mathrm{TC}}$
$10.3 \frac{\Delta \mathrm{ARS}}{\Delta \mathrm{ABC}}$

QUESTION 11

In the diagram alongside,
ACBT is a cyclic quadrilateral.
BT is produced to meet tangent AP on D .
CT is produced to P . $\mathrm{AC} / / \mathrm{DB}$.
11.1 Prove that $\mathrm{PA}^{2}=\mathrm{PT} . \mathrm{PC}$
11.2 If $\mathrm{PA}=6$ units, $\mathrm{TC}=5$ units and $\mathrm{PT}=x$, show that

$$
\begin{equation*}
x^{2}+5 x-36=0 \tag{2}
\end{equation*}
$$

11.3 Calculate the length of PT.
(2)

11.4 Calculate the length of PD.
(3)

INFORMATION SHEET

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$A=P(1+n i) \quad A=P(1-n i)$

$$
A=P(1-i)^{n}
$$

$$
A=P(1+i)^{n}
$$

$T_{n}=a+(n-1) d$
$\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$T_{n}=a r^{n-1} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} ; r \neq 1$
$S_{\infty}=\frac{a}{1-r} ;-1<r<1$
$F=\frac{x\left[(1+i)^{n}-1\right]}{i}$

$$
P=\frac{x\left[1-(1+i)^{-n}\right]}{i}
$$

$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad \mathrm{M}\left(\frac{x_{1}+x_{2}}{2} ; \frac{y_{1}+y_{2}}{2}\right)$
$y=m x+c \quad y-y_{1}=m\left(x-x_{1}\right) \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\tan \theta$
$(x-a)^{2}+(y-b)^{2}=r^{2}$
In $\triangle \mathrm{ABC}$:

$$
\begin{aligned}
& \frac{a}{\sin \mathrm{~A}}=\frac{b}{\sin \mathrm{~B}}=\frac{c}{\sin \mathrm{C}} \\
& a^{2}=b^{2}+c^{2}-2 b c \cdot \cos \mathrm{~A} \\
& \text { area } \triangle \mathrm{ABC}=\frac{1}{2} a b \cdot \sin \mathrm{C}
\end{aligned}
$$

$\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta$
$\sin (\alpha-\beta)=\sin \alpha \cdot \cos \beta-\cos \alpha \cdot \sin \beta$
$\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta$ $\cos (\alpha-\beta)=\cos \alpha \cdot \cos \beta+\sin \alpha \cdot \sin \beta$
$\cos 2 \alpha=\left\{\begin{array}{l}\cos ^{2} \alpha-\sin ^{2} \alpha \\ 1-2 \sin ^{2} \alpha \\ 2 \cos ^{2} \alpha-1\end{array}\right.$
$\sin 2 \alpha=2 \sin \alpha \cdot \cos \alpha$
$\bar{x}=\frac{\sum x}{n}$

$$
\sigma^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

$\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}$
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B) \hat{y}=a+b x$

$$
b=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^{2}}
$$

